S.I.P (Six Intersecting Pentagrams) - Francesco Mancini

Intermediate Inspired by Robert Lang's Polypolyhedron \#7 and the work of Tom Hull and Francis Ow, this model was co-discovered independently by Jared Needle and Leong Cheng Chit. Assembly algorithm and instructions developed by J.C. Nolan from 30 degree variation of unit by Meenakshi Mukerji. Original 30 degree creasing pattern by Leong Cheng Chit, BOS 2004. Fold from 30 2×1 rectangles of 6 different colors. $305^{\prime \prime} \times 10^{\prime \prime}$ rectangles produce an 11 " $\times 11^{\prime \prime} \times 11^{\prime \prime}$ model.
1.

10.

11.

In the assembled model, notice that for each obtuse angle in the pentagram, the opposite, acute angle, will contain the same color but on the inside - Purple opposite

Purple, Green opposite Green, etc.

The paper can be "accordioned" to make the weaving easier.

Additionally, each obtuse angle will meet an acute angle in an opposite pentagram and vice versa. We will go around the ring adding each color moving counter clockwise Purple, Green, Pink, Blue then Yellow.

For the last pentagram, it is best to place all five pieces separately and then connect them after they are in position.

Assembly complete, two views are shown. The first rotated just slightly around the y-axis. Notice the two fundamental structures, three pentagrams intersecting tightly to form a triangle (center of leftmost illustration) and the ring of five intersecting pentagrams that forms a pentagon (center of rightmost illustration).

